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On two-dimensional packets of capillary-gravity waves 
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The motion of a two-dimensional packet of capillary-gravity waves on water of 
h i t e  depth is studied. The evolution of a packet is described by two partia1 
differential equations : the nonlinear Schrodinger equation with a forcing term 
and a linear equation, which is of either elliptic or hyperbolic type depending on 
whether the group velocity of the capillary-gravity wave is less than or greater 
than the velocity of long gravity waves. These equations are used to examine the 
stability of the Stokes capillary-gravity wave train. The analysis reveals the 
existence of a resonant interaction between a capillary-gravity wave and a long 
gravity wave. The interaction requires that the liquid depth be small in com- 
parison with the wavelength of the (long) gravity waves and the evolution equa- 
tions describing the dynamics of this interaction are derived. 

1. Introduction 
Recently, our understanding of the evolution of weakly nonlinear surface 

gravity waves has increased greatly. The contributions by Benjamin & Feir 
(1967) and Whitham (1967, 1974) showed clearly that a nearly monochromatic, 
fhite amplitude gravity wave is unstable to small modulational or side-band 
perturbations when the product of the wavenumber k and the fluid depth h 
exceeds 1.363. Following this important discovery, Benney & Newel1 (1967) and 
Hasimoto & Ono (1972) derived a single equation describing the long-time evolu- 
tion of the envelope of a packet of plane finite amplitude gravity waves and 
showed that this equation contained the above stability criterion implicitly. 
Their work, together with that of Zakharov & Shabat (1972), also demonstrated 
that the evolution equation admitted envelope soliton solutions and that these 
solitons were intimately related to the terminal state of the side-band instability. 
Clear experimental confirmation and further discussion of these properties were 
given subsequently by Yuen & Lake (1975). Davey & Stewartson (1974) extended 
the theoretical basis for these results to discuss two-dimensional wave packets, 
but neither the analytical solution nor any experimental evidence regarding the 
evolution or interaction of two-dimensional packets has yet emerged. 

In  this paper we extend the analysis of Davey & Stewartson to include the 
effects of capillarity. The evolution equations derived are a convenient basis for 

t Permanent address : Department of Mechanical Engineering, University of Belgrade, 
Yugoslavia. 
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discussing the stability of a Stokes capillary-gravity wave train for arbitrary kh. 
The analysis reveals that there are several distinct wavenumber bands in which 
the wave train is unstable to modulational perturbations. It also shows that two 
of the stability boundaries are associated with two separate resonance phenomena. 
The first corresponds to the second-harmonic resonance elucidated by McGoldrick 
(1970a, b, 1972) and the second is associated with a resonance between a shallow- 
water gravity wave and a capillary wave. The latter requires that the group speed 
of the capillary wave matches the phase velocity of a shallow-water gravity wave. 
The dynamical evolution equations describing this resonance phenomenon are 
derived and their solution is discussed. 

2. The self-modulation evolution equations 
We consider the evolution of a progressive gravity-capillary wave moving on 

the free surface of a liquid of constant depth h. The undisturbed free surface 
corresponds to the plane z = 0, where z points vertically upwards, and the 
bottom is located at z = - h.  The remaining Cartesian co-ordinates x, y are in the 
plane of the undisturbed free surface, and we choose z to point in the direction 
of the wave propagation. Since the fluid motion is irrotational, a velocity potential 
#(x, y, 2, t )  satisfying Laplace's equation 

4 X X + # ~ ~ + 9 , ,  = 0, --JL < z < c, (2.1) 

can be defined, where C(x, y, t )  denotes the position of the undulating free surface. 
The boundary conditions for the motion are 

g2=  0 at ~ = - h ,  (2 .2a )  

(2 .2b )  

The parameter T is the ratio of the surface-tension coefficient to the fluid density 
and g is the gravitational acceleration. We suppose that initially (at t = 0) the 
surface is distorted in the manner 

iw C(x,y,t = 0) = e- { A  (ex, ey) eika - A* c i k z ) ,  
&I+ !n 

where !i" = k2T/g, the asterisk denotes the complex conjugate and e is a non- 
dimensional parameter measuring the slope of the wavy surface, which has 
wavelength 2nlk. The envelope A(Ex, ey) of the surface distortion is allowed to 
possess a slow spatial variation and the frequency w is determined uniquely by 
the value of k through the dispersion relation 

where CT = tanh kh. 
We now derive the equations describing the time evolution of A when the 

motion is only weakly nonlinear (0 < e < 1). On this basis we assume that (2.1) 

w = (gka( 1 + T'))*, (2.4) 
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and (2.2) have a solution of the form 

$h = E p  + €2$h(2) + €3$h(3) + . . . , (2.5a) 

< = S L y  + s 2 p  + E35(3) + . . . . (2.5b) 

Also, as shown by the earlier work of Benney & Newell (1967) and Davey & 
Stewartson (1974), it  proves convenient to introduce the multiple scsIes 

6 = E ( X  - cut) ,  7 = E Y ,  7 = € 2 t ,  c1 = @(X - cut),  . . . . (2.6) 

cu denotes the group velocity and is given by the relation 

(2.7) 

Substituting these forms into the governing set of equations, solving successively 
the equations resulting from repeated use of the limit process E + 0, with x, y, x ,  
t ,  E, 7 and 7 fixed, and using the notation 

a@ a + k h ( l - a 2 )  T w 
c = - = c p (  ak 2a +FPJ' C p = - .  k 

E = exp {i(h - wt)} ,  

one obtains the following results: 

i w  
g p  = 0 + - {AE - A*E-1}; (2.9b) 

1 + P  

. (z  + h) sinh k(z  + h) - ha cosh k(z  + h) 
cosh kh 

- %  {A$ -AT E-1) 

(2.10a) 
i w  

1+T 
g p  = cu - k2( 1 - a2) [ A  12 + - {DE - D*E-1) 

(2.10 b )  

The second-harmonic terms in (2.10) me observed to be singular when 
T= a2/(3-a2), which for deep water (a = 1) yields P =  *. Wavenumbers 
satisfying this condition have the property that the phase speeds of the first 
and second harmonic match, resulting in the phenomenon known as 'second- 
harmonic resonance'. The analysis breaks down at this wavenumber and a new 
scaling is required (cf. McGoldrick 1970b). 

The significance of the value 5? = + for deep water has been known for some 
time. Harrison (1909) showed that the influence of nonlinearity on capillary- 
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gravity waves is quite different depending on whether p is less than or greater 
than 6 .  For 5? < 4 the influence of nonlinearity (higher harmonics) is to distort 
the wave profile in such a way that the crests are sharpened and the troughs 
flattened. Profiles of this type are called gravity waves. When 5? > the influence 
of nonlinearity is in the opposite sense and is consistent with the results for pure 
capillary waves given by Crapper (1957).  McGoldrick (1970b, 1972) g’ ives a com- 
plete discussion of the harmonic resonance phenomenon in gravity-capillary 
waves. 

Assuming that the wavenumber k is not too close to that for which 
p = cr2/(3 - a2), we can continue the analysis to obtain 

( z  + h)  sinh k(x  + h)  - hcr cosh k(x + h) 
2k cosh k h  + 

x ((2khcrA,- A,, - 2ikDc- 2ikAs,) E + c.c.1 
[(z + h)’- h2] cash k ( z  + h)  - { A g E + A g E - l )  2 cosh k h  

+ higher-harmonic terms. (2.1 1 )  

Then, upon using boundary condition (2.2 b ) ,  we find that the leading-order mean 
flow or long-wave component is prescribed by the equation 

(gh-c:) @&o’+gh@F~o) = -k2cP 

This equation shows that the long-wave component is generated by the self- 
interaction of the short wave. Also, upon comparing the first-harmonic terms in 
(2.2b) and (2.2c),  we find that the two equations are compatible only if A(g, 7 , ~ )  
satisfies the evolution equation 

2iwA,  + ww”As5+ cpcBA,, = 2k2cP 1 + A  5 ( 1  - cr2) ( 1  + p)) A@‘S1,O) 
2 %  

4 1 - v2) ( 9  - 8) + T(3  - c r 2 )  (7 - cr2)  + 8 a 2 - 2 ( 1  - cr2)2 ( 1  + 5?)- - +y fT2 - 5? ( 3  - cr2)  

x IAI2A. (2.13) 
If we introduce a quantity Q defined by 

(2.14) 

the evolution equations (2.12) andi(2.13) can be reduced to a form consistent 
with that derived by Davey & Stewartson (1974),  namely 

and 
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The coefficients have the following definitions: 

h = &J"(k), p = w'(k)/Zk = cu/2k, 

2cp +c,(l - a2) (1 + P )  
K = ghc, 

(gh - c;, (1 + 
. 

The coefficients reduce to those given by Davey & Stewartson when the surface 
tension vanishes (5! = 0). However, several important features are present here 
which are excluded by the limitation to pure gravity waves. First, we note that 
the equation for Q (or equivalently W O ) )  is of either elliptic or hyperbolic type 
depending on whether cz 5 gh. For gravity waves of finite wavelength, c, is 
always less than (gh)t and Q satisfies a Poisson equation. The influence of surface 
tension is to increase the group velocity and may do so to the extent that cg can 
exceed the velocity (gh)t of long gravity waves. The equation for Q is then hyper- 
bolic with characteristics 

7 = k {(c;/gh) - l]* + constant. (2.18) 

One expects that the solutions for A and Q will be quite different in this case when 
geometrical inhomogeneities, such as depth variations, are present. Second, 
observe that the coefficient v of the cubic nonlinear term is singular when 
c,(k) = (gh)B (it is also singular when the second-harmonic resonance condition is 
satisfied as noted earlier). This corresponds to a long-wavelshort-wave resonance 
in which the group velocity of the short (capillary) wave matches the phase 
velocity of the long (gravity) wave. Equations (2.15) and (2.16) break downunder 
this condition and a different analysis and scaling are required. We present the 
relevant equations describing this resonance in $4. 

Except for wavenumbers close to the two resonance conditions c,(k) = (gh)i 
and = c 2 / ( 3  - a2), (2.15) and (2.16) describe, to leading order in c, the evolution 
of a nearly monochromatic, progressive gravity-capillary wave subject to the 
appropriate initial and boundary conditions. When the wave motion is one- 
dimensional (i.e. A is independent of q ) ,  Q vanishes and (2.15) reduces to the now 
familiar nonlinear Schrodinger equation, first derived for water waves by Benney 
& Newel1 (1967). A method for solving the equation exactly when the influence 
of the initial conditions vanishes sufficiently rapidly as 161 becomes large has been 
presented by Zakharov & Shabat (1972). Their solution demonstrated the 
existence of envelope solitons, which, as shown recently by Yuen & Lake (1975), 
play a key role in the evolution of a deep-water gravity-wave packet and/or 
gravity-wave train. 

Before discussing the stability of wave-train sohtions to these equations, we 
present their form in the deep-water limit (kh+co, ckh < 1, fixed). Applying 

45-2 
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FIauRE I. Stability diagram for the Stokes capillary-gravity wave train. S and U denote 
stable and unstable regions. - - - -, asymptotes of the respective curves. 

the limit to (2.12), we find that the equation is homogeneous and always of elliptic 
type. The solution then reduces simply to 

q , o ,  = @(LO) = 0 
9 9 

and (2.13) becomes 
(2.19) 

2 i ~ A ,  - - g 1-6!1?-3p~ A +-(1+3!P)A9, g = - 
4k l + P  c5 2k 

The second-harmonic resonance is still present as is manifested by the factor 
1 - 2 p  in the denominator of the nonlinear term, but the long-wave/short-wave 
resonance has disappeared. We postpone a discussion of this until the next section. 

3. Modulational instability of a uniform wave train 
Hasimoto & Ono (1972) have shown, for the one-dimensional case, that the 

evolution equation (2.15) for A is very convenient for examining the stability 
of a uniform or Stokes wave train. They showed that the wave train is unstable 
when hv < 0 and confirmed the result of Benjamin & Peir (1967) that the Stokes 
gravity wave is unstable when kh > 1-363. Hayes (1973) and Davey & Stewartson 
(1974) generalized the stability criterion to the case of two-dimensional waves. 
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As discussed above, the equation for Q can be hyperbolic when capillarity is 
included, so that Q is constant along characteristics. However, since there is no 
reason for Q to change across characteristics in the constant-depth case considered 
here, the solution Q = Qo = constant applies for both cg >< (gh)).  Thus the two- 
dimensional criterion will be unaltered. The stability or instability of a capillary- 
gravity wave train to oblique disturbances will not be discussed further herein. 

The criterion hv < 0 for instability of the one-dimensional wave train shows 
that stability boundaries exist for those values of 5? and kh corresponding to 
simple zeros of h and v, providing they are not coincident, and where v has 
a first-order singularity. In  figure 1, we show the regions in kh, T space where the 
Stokes capillary-gravity wave train is modulationally stable and/or unstable. 
Curves I and 5 correspond to simple zeros of the coefficient v. Curve I passes 
through the point kh = 1.363 given by Benjamin & Feir (1967). Along curve 2, 
h N o"(k) vanishes and the phase velocity has a minimum. Curves 3 and 4 define 
the resonance cases = a2/(3 - a2) and c: = gh respectively, and v is singular 
along each of them. Curve 4 has the asymptote 

kh = pT'-$,  k h B  1, (3.1) 

kh = ST'-y-, 4 kh 1. (3-2) 

and curve 5 has the asymptote 

It is interesting to note that capillary waves with T' > 1 are stable in the region 
between these two boundaries. Such a result cannot be obtained if the case of 
pure capillary waves is treated from the beginning [i.e. omitting the term 2gc in 
(2.2c)l. In  that case one finds that capillary waves are modulationally unstable 
for all kh.? This apparent inconsistency can be explained in the following way. 
For p tending to infinity, the terms $ and 7 in the equations for the asymptotes 
can be neglected. In  this limit the two boundaries coincide, since they have the 
same inclination, and the stable region between them disappears. Therefore 
analysis of capillary waves by omitting the effect of gravity can lead to erroneous 
results regarding the stability of the Stokes wave train over a significant range 
of wavenumbers. 

It is now clear why the resonance condition c: = gh vanishes in the deep-water 
limit. Noting that the slope of the resonance locus (curve 4 in figure 1) is finite, 
the deep-water limit ( k h + m ,  p fixed) always places one in the unstable region 
between curves 3 and 4, providing T > $ of course. Thus the long-wave/short- 
wave resonance found herein is uniquely a shallow-water phenomenon so far as 
the gravity wave (long wave) is concerned. 

4. Long wavelshort-wave resonant interaction 
We now develop the dynamical evolution equations describing the long-wave/ 

short-wave resonant interaction whose existence we noted earlier in $2. The 
evolution equations (2.15) and (2.16) are singular when c: = gh and so we expect 

See appendix for details. 
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that this interaction occurs on a much shorter time scale than that for self- 
modulation. This indeed turns out to be true, but it is not a priori obvious what 
that time scale should be. The balance we want to achieve must be such that the 
dispersion of the short wave is balanced by the nonlinear interaction of the long 
wave with the short wave and such that the evolution of the long wave is driven 
by the self-interaction of the short wave: a Reynolds-stress-like effect. It emerges 
that the required time scale is faster than that found by Newel1 (1977) in his 
model of a long-wavelshort-wave interaction. However, as noted earlier, the 
resonant interaction considered here vanishes in the deep-water limit. 

Keeping in mind the requirements just mentioned, one can show that the 
expansion for the dependent variables must have the form 

and similarly for 6. Restricting our discussion to the one-dimensional case, we 
introduce the multiple scales 

$ = ,%$(O) + E$(1) + €+$O + &(3) + €2$(4) + &$(5) + €Q$@) + . . . , (4.1) 

5 = €+(X - c,t), 7 = d t ,  = e q x  - cut), . . . . (4.2) 

Although w0 use the same multiple-scale variables in this section as in the 
previous ones, but with different definitions, no confusion should arise. In  the 
expansion (4.1), $ ( I )  describes the free short-wave mode, so that E is again 
a non-dimensional measure of the amplitude of that mode. If we then take $@) to 
describe the long wave a consistent dynamical description is obtained with the 
result that, to leading order, the long wave and the short wave are free modes of 
the system. 

Using the expansion (4.1) and the multiple-scale variables (4.2) in the govern- 
ing system of equations (2.1) and (2.2), the following results are obtained: 

{ A  ( E ,  7 )  E + A *E-l), 
cosh k(z  + h) 

cosh kh 
$ ( I )  = @ ( I 3  @(E, 7) + 

(4.3) 

(4.4) 
q p  = O + i w ( l  +T)-1{AE-A*E-l};  J 

a t  O(c+),  

(4.5) 
{F(c ,  7 )  E +P*E-l}, 

cosh k(z  + h) 
cosh kh 

#J(~) = O)(5, 7) + 

g<@) = C,  @(!I + iw( 1 + T)-l  {PE - P+E-l); 
a t  O(E+), 

I {D(5,7) E + D*E-l} 
$(3) = @(3J9(5, 7 )  + cosh k(z + h) 

cosh kh 

. (z  + h)  sinh k(z  + h)  - hv cosh k(x + h) 
cosh kh {ASE - A;" E-'}, - - z  
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at O(e2) ,  

71 1 

{H(& 7) E + H*E-1 
cosh k(z  + h) 

cosh kh 
qy4) = - 1 ( z + h)2 @g) + 

O ) ( E ,  7) + 

(4.7) I {Fp - F$ E l } ,  
( x  + h) sinh k(z  +- h) -ha  cosh k(z  + h) 

cosh kh 
- i  

Applying boundary condition (2 .2b )  at O(e2) shows that @(O) is a free long wave. 
Proceeding to the next order we obtain the solution for qV5), which is identical 

to the solution given in (2 .11 )  without the higher-harmonic terms. Then, upon 
examination of the first-harmonic terms in the boundary conditions (2 .2b )  and 
( 2 . 2 ~ )  correct to this order, one finds that they are compatible only if the ampli- 
tude of the first harmonic satisfies the evolution equation 

iA,+hA, = 6 q A ,  (4.8) 

(4 .9 )  

where h has the same definition as in (2 .17)  and 

6 = k { l  + &/CJ ( 1  - (r2) ( 1  + P ) } .  
Also, in order to avoid the appearance of secular terms through use of the 
kinematic boundary condition at  O(&), we must have 

a$! = - i k 2 ( 1 - a 2 ) ( I A 1 2 ) 5 .  (4.10) 

The above equations imply that the evolution of the long wave is forced by the 
self-interaction of the short wave and that the short wave is modulated and 
detuned by its interaction with t,he long wave. 

The evolution equations describing this interaction can be written in a more 
convenient form using the definition 

B(f;,T) = 6@(!), (4.11) 

so that we obtain the coupled pair of equations 

iA, + hA, = BA ( 4 . 1 2 ~ )  

and B, = -a(IAJ2),5. (4.12b) 

It is expected that these equations will describe resonant interaction in other 
dispersive phenomena when the coefficient of the nonlinear term in the cubic 
Schrodinger equation is singular because the group velocity of the modulated 
wave matches a long-wave phase velocity of the system.t In  the present case, 
the coefficient a is given by 

a = &Yk2(1-(r2) = ~ k 3 ( 1 - ( r 2 ) { 1 + ~ ( c g / c p ) ( 1 - ( r 2 ) ( 1 + ~ ) }  > 0 (4.13) 

and A, the dispersion of the capillary waves, is also positive. 

t While this work was in progress, we discovered that Grimshaw (1975) htts derived 
the same evolution equations in an analysis of internal waves. 
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The set of equations (4.12) can be integrated in terms of Jacobian elliptic 
functions €or the case of travelling-wave solutions. Writing A in the form 

A ( ‘57)  = exp {il(E - W}f(E - Cd (4.14) 

shows that B = (a/C)f2, f”+af3-bf = 0, (4.15) 

where (4.16) 

The solutions for the envelope function f (X) are 

f(X) = A,dn(PXJm), a > 0, 4 < b/uAg < 1,) 

P 2  = +aA& 

P 2  = aAi/2m, 

(i) ( 4 . 1 7 ~ )  

(4.17b) 
(ii) f(X) = A,cn(PXjm), a > 0, --oo < b/aA$ < 4, 

( 4 . 1 7 ~ )  
(iii) f(X) = A,sn(PX[m), a < 0, 1 < b/aA% < a, 

(4.17d) 
(iv) f(X) = A,cd(PXlm), a < 0, -a < b/aA$ < 1, 

m = (b/a)Ai/[2 - (b/a) At];  

(4.17e) 
(v) f(X) = A,nd(PX(m), a > 0, 1 < b/aA$ < co, 

The gravity-capillary wave problem studied here has a, h > 0, so that only 
solutions (iii) and (iv) are admissible. In  the limit m = 1, solution (iii) becomes 

m = 2{1- (b/aA:)}; 

I 
I 

I 
I 

m = *{ 1 - (b/aA:)}-l; 

p2 = -~A:/2m, m = ((2 b / ~ A g )  - I}-’; 

P 2  = - uAl/(m + l), 

p2 = aAt/2(1-m), m = (b/a)At-  l/[(b/a)A$-2]. 

f(X) = A,  tanh (PX) 
and solution (iv) becomes 

f(X) = A,. 

(4.18) 

(4.19) 

The first caseis equivalent to the phase-jump solution to the nonlinear Schrodinger 
equation (Hasimoto & On0 1972). Also, the general inverse-scattering-transform 
method developed by Ablowitz et al. (1974) can be used to obtain the complete 
solution but we do not pursue that here. 

A further aspect of (4.12) which is worthy of discussion is the stability of the 
solution 

A = A,exp(-iB,~), B = B, (4.20) 

for a uniform wave train. Superimposing a small modulational perturbation of 
the form 

A = Ao{l+a(E,~)}exp(-iiBo~), B = B,{l+b{~,7), (4.21) 
where 

(4.22) 

and linearizing, one obtains the eigenvalue relation 

a = a+ exp {i(K!j + a7)} + a- exp { - i(K5 + m)}, 

a3- ( ~ 2 ~ ) 2 , + 2 a h ~ 3 p , p  = 0. (4.23) 

The wave train is unstable to disturbances satisfying the condition 

38lal IA,)2 > h 2 P .  (4.24) 
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There always exists a modulation wavelength long enough for instability. As was 
found for the case of self-modulation, it is expected that the envelope solution 
admitting solitons will play a major role in the dynamics of the interaction 
described by (4.12). 

5. Concluding remarks 
The dynamical evolution equations for weakly nonlinear capillary-gravity 

waves have been derived and used to study the stability of a Stokes wave train. 
It is found that there are several wavenumber bands within which a capillary- 
gravity wave train is unstable to modulational (side-band) perturbations. Within 
these unstable bands the wave motion is known to depend crucially on the 
existence of envelope solitons and a uniform wave train does not exist. In  practice, 
however, detection of the side-band instability and soliton formation in the 
capillary regime may be offset by the rapid viscous dissipation occurring a t  high 
wavenumbers. The maximum growth rate for the side-band instability is 
0(e2A$lul), which must be compared with the viscous decay, which is O(v, k2) ,  
where v* is the kinematic viscosity of the fluid. IvI becomes large in the neigh- 
bourhood of the resonant loci and therefore these are the wavenumber bands in 
which the modulation of capillary-gravity waves is most likely to be observed. 

The existence of a resonant interaction between a shallow-water gravity wave 
and a capillary wave has emerged from the analysis and the equations describing 
this interaction have been derived. It is found that the resonant interaction 
occurs on a time scale O(&) compared with 0(c2)  for self-modulation, where E is 
a measure of the amplitude (nonlinearity) of the capillary-gravity wave. The 
dynamical characteristics of this resonant interaction are being studied further. 

This work was partially supported by NASA, Planetary Atmospheres Branch, 
under grant NGR-05-018-178. One of us (V.D.Dj.) acknowledges the support 
of a Fulbright Grant from the Council for International Exchange of Scholars. 

Appendix 

pure capillary waves (g = 0). The equations equivalent to (2.13) and (2.14) are 
We present here the evolution equations describing the self-modulation of 

and c g @ ( t 0 )  = k2( 1 - a2) ( A  1 2 .  

w = k%( a T ) j  
The dispersion relation is 

and the group speed is given by 

cg = (k2T/2w) { 3 ~  + kh( 1 - a2)}. (A 5 )  
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k h ( l - c ~ 2 ) + 2 ~ % )  IA12, 
CP 

one obtains the pair of equations 

and 

where h and ,u have the same definitions as in (2.17) and the remaining coefficients 
are given by [ c~ + kh( 1 - c ~ ' ) ] ~ )  

4w 3 c ~  + Eh( 1 - g2) 

E3T k2h v - - ( l - c T Z ) ,  K2 = -(l--C2). 
- 2cpcg Cg 

In  this case h > 0 
modulationally unstable. 

nd v < 0 for all kh, so that pure capillary waves are always 
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